Microbial excavation of solid carbonates powered by P-type ATPase-mediated transcellular Ca2+ transport.
نویسندگان
چکیده
Some microbes, among them a few species of cyanobacteria, are able to excavate carbonate minerals, from limestone to biogenic carbonates, including coral reefs, in a bioerosive activity that directly links biological and geological parts of the global carbon cycle. The physiological mechanisms that enable such endolithic cyanobacteria to bore, however, remain unknown. In fact, their boring constitutes a geochemical paradox, in that photoautotrophic metabolism will tend to precipitate carbonates, not dissolve them. We developed a stable microbe/mineral boring system based on a cyanobacterial isolate, strain BC008, with which to study the process of microbial excavation directly in the laboratory. Measurements of boring into calcite under different light regimes, and an analysis of photopigment content and photosynthetic rates along boring filaments, helped us reject mechanisms based on the spatial or temporal separation of alkali versus Acid-generating metabolism (i.e., photosynthesis and respiration). Instead, extracellular Ca(2+) imaging of boring cultures in vivo showed that BC008 was able to take up Ca(2+) at the excavation front, decreasing the local extracellular ion activity product of calcium carbonate enough to promote spontaneous dissolution there. Intracellular Ca(2+) was then transported away along the multicellular cyanobacterial trichomes and excreted at the distal borehole opening into the external medium. Inhibition assays and gene expression analyses indicate that the uptake and transport was driven by P-type Ca(2+)-ATPases. We believe such a chemically simple and biologically sophisticated mechanism for boring to be unparalleled among bacteria.
منابع مشابه
Transcellular Intestinal Calcium Transport in Freshwater and Seawater Fish and Its Dependence on Sodium/calcium Exchange
Transepithelial calcium uptake and transcellular calcium uptake mechanisms were compared in the proximal intestine of freshwaterand seawater-adapted tilapia, Oreochromis mossambicus. Stripped intestinal epithelium of seawater fish showed a higher paracellular permeability to calcium in vitro. Net transepithelial calcium uptake was 71% lower, reflecting a physiological response to the increased ...
متن کاملCalbindin-D28K facilitates cytosolic calcium diffusion without interfering with calcium signaling.
The role of calbindin-D28K, in transcellular Ca2+ transport and Ca2+ signaling in rabbit cortical collecting system was investigated. Rabbit kidney connecting tubules and cortical collecting ducts, hereafter referred to as cortical collecting system, were isolated by immunodissection and cultured to confluence on permeable filters and glass coverslips. Calbindin-D28K was present in the cytosol ...
متن کاملNa+-dependent Ca2+ uptake in isolated opercular epithelium of Fundulus heteroditus
It is concluded that Ca2+ transport across the basolateral membranes of the ionocytes in killifish skin is mediated for the major part by a Na+/Ca2+-exchange mechanism that is driven by the (transmembrane) Na+ gradient established by N a+/K +-ATPase. The conclu sion is based, firstly, on the biochemical evidence for the presence of a Na+/Ca2+-exchanger next to the Ca2+ATPase in the basolateral...
متن کاملModeling of transcellular Ca transport in rat duodenum points to coexistence of two mechanisms of apical entry.
Employing realistic parameters, we have demonstrated that a relatively simple mathematical model can reproduce key features of steady-state Ca2+ transport with the assumption of two mechanisms of Ca2+ entry: a channel-like flux and a carrier-mediated transport. At low luminal [Ca2+] (1-5 mM), facilitated entry dominates and saturates with Km = 0.4 mM. At luminal [Ca2+] of tens of millimolar, ap...
متن کاملPlatelet calcium transport in hypertension.
To determine platelet Ca2+ transport entities involved in increased cytosolic Ca2+ in the platelets of hypertensive individuals, we studied the relations between blood pressure and Ca2+ transporters in platelet membranes from 22 white male volunteers 32 to 68 years old. We used thapsigargin, a specific inhibitor of the internal membrane Ca(2+)-ATPase, to differentiate between plasma membrane an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 50 شماره
صفحات -
تاریخ انتشار 2010